Midterm Exam

(February 15th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (22 PTS)

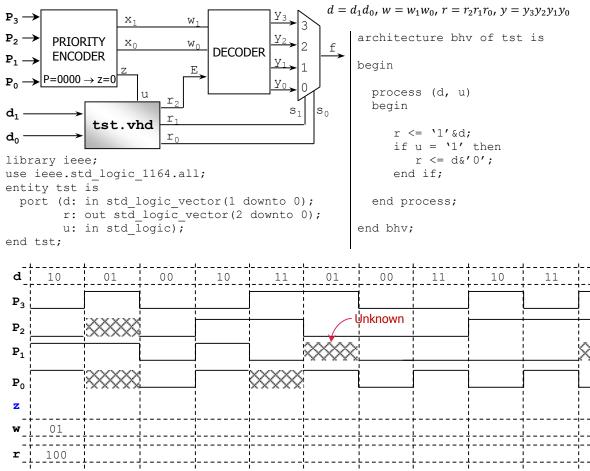
a) Complete the following table. The decimal numbers are unsigned: (3 pts.)

0	Decimal	BCD	Binary	Reflective Gray Code
				101011
		000100101000		

b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (15 pts.)

REPRESENTATION					
Decimal	Sign-and-magnitude	1's complement	2's complement		
	110001				
			10000		
-32					
			1111		
			0101001		
		1011010			

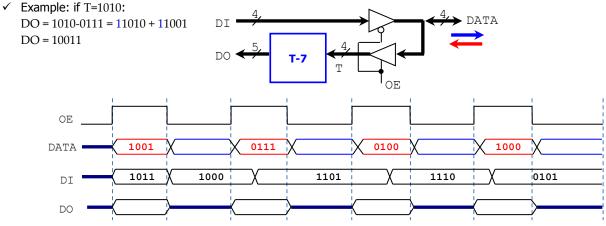
c) Convert the following decimal numbers to their 2's complement representations. (4 pts) \checkmark 16.75


PROBLEM 2 (14 PTS)

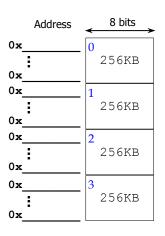
У

f

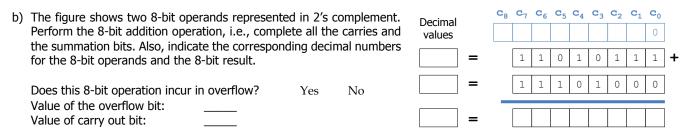
0010


• Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

10


PROBLEM 3 (11 PTS)

• Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-7, with the result having 5 bits. T is a 4-bit signed (2C) number.


PROBLEM 4 (10 PTS)

- A microprocessor has a memory space of 1 MB. Each memory address occupies one byte. 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes.
 - a) What is the address bus size (number of bits of the address) of the microprocessor?
 - b) What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? (1 pt.)
 - c) The figure to the right shows four memory chips that are placed in the given positions:
 ✓ Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips. (8 pts)

PROBLEM 5 (15 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits *n* to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (6 pts) \checkmark 37 + 41

c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (3 pts) \checkmark -7 x 9

PROBLEM 6 (10 PTS)

• Sketch the circuit that computes |A - B|, where A, B are 4-bit <u>unsigned</u> numbers. For example, $A = 0101, B = 1101 \rightarrow |A - B| = |5 - 13| = 8$. You can only use full adders (or multi-bit adders) and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

PROBLEM 7 (18 PTS)

- Sketch the circuit that implements the following Boolean function: $f(a, b, c, d) = (\bar{a} \oplus b)(c \oplus d)$
 - ✓ Using <u>ONLY</u> 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)
 - ✓ Using two 3-to-1 LUTs and a 2-to-1 MUX. Specify the contents of each of the 3-to-1 LUTs. (6 pts)